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Abstract—A Diels–Alder reaction of 3- and 2-nitroindoles with Danishefsky’s diene gives the expected 2- and 3-hydroxycarbazoles
in very good to excellent yields (73–91%) and with apparent complete regioselectivity. © 2001 Elsevier Science Ltd. All rights
reserved.

It is well established that the indole 2,3-double bond
can serve as a dienophile in inverse electron demand
Diels–Alder reactions.1 The recent work of Snyder is
particularly noteworthy in this regard.2 Fewer examples
exist of indole reacting with electron-rich dienes in
normal demand Diels–Alder reactions. Raasch
described the Diels–Alder reaction of indole with tetra-
chlorothiophene-1,1-dioxide.3 Wenkert showed that
indoles with electron-withdrawing groups on both the
C-3 position and nitrogen react with simple dienes
(isoprene, 2,3-dimethyl-1,3-butadiene) to give tetra-
hydrocarbazoles.4 Kraus achieved the first intramolecu-
lar Diels–Alder reactions of the indole double bond.5

Steckhan has effected a photoinduced electron-transfer-

catalyzed step-wise reaction between indole and 1,3-
cyclohexadienes.6 Markgraf achieved the cycloaddition
of N-methylindole and o-xylylene.7 Padwa has
employed an intramolecular indole-furan Diels–Alder
reaction strategy to craft several hexahydroindolin-
ones.8 During the course of our work, Mancini
reported Diels–Alder reactions between N-tosyl-
3-nitroindole and N-acyl-N-alkylamino-1,3-butadi-
enes.9

In continuation of our interest in the cycloaddition
chemistry of 2- and 3-nitroindoles,10 we now describe
the Diels–Alder reactions of nitroindoles 1–3 with Dan-
ishefsky’s diene (4) (1-methoxy-3-(trimethylsiloxy)-1,3-

Scheme 1.

Scheme 2.
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butadiene) and 1-dimethylamino-3-tert-butyldimethyl-
siloxy-1,3-butadiene (5).11

Treatment of 3-nitro-1-(phenylsulfonyl)indole (1)12 with
diene 4 in refluxing toluene afforded a mixture of exo
adduct 613 (56% yield) and 2-hydroxy-9-(phenylsul-
fonyl)carbazole (7)13 (35% yield) following acid hydroly-
sis. Both compounds were fully characterized, including
X-ray structure determinations.14 In refluxing THF the
cycloaddition of 1 and 4 gave a lower yield (47%) of a
mixture of 6 and the endo isomer by NMR (Scheme 1).

Similarly, 1-ethoxycarbonyl-3-nitroindole (2)12 reacted
with 4 under the same conditions to afford 9-ethoxycar-
bonyl-2-hydroxycarbazole (8)13 in 85% yield. The inter-
mediate cycloadduct was not observed in this case.
Hydrolysis of 8 with KOH/MeOH/reflux gave the
known 2-hydroxycarbazole (9)15 (Scheme 2).

A Diels–Alder reaction under the usual conditions
between 1-ethoxycarbonyl-2-nitroindole (3)16 and 4
gave 9-ethoxycarbonyl-3-hydroxycarbazole (10)13 in
73% yield, after acidic treatment. Base cleavage of the
carbamate afforded the known 3-hydroxycarbazole
(11)17 (Scheme 3).

In contrast to these relatively smooth Diels–Alder reac-
tions with Danishefsky’s diene (4), nitroindole 1 and
3-nitro-1-pivaloylindole12 failed to produce isolable
products with Rawal’s diene (5). However, 5 did react
with 2-nitroindole 3 in refluxing toluene to afford
cycloadduct 1213 in 51% yield, along with 2-nitroindole
(37% yield). Deprotonation of 12 with TBAF gave
carbazole 10 (quantitative) (Scheme 4).

The comparable Diels–Alder reactions of dienes 4 and
5 with 2-nitro-1-(phenylsulfonyl)indole (13)16 were quite
sluggish and only 5 behaved appropriately to afford
carbazole 1413 in low yield (Scheme 5).

We have also pursued a Diels–Alder approach to 1-
and 4-hydroxycarbazoles with two dienes. A
vinylketene equivalent, 3-hydroxy-2-pyrone,18,19 failed
to undergo a cycloaddition with either 2-nitroindole 3
or 3-nitroindole 2 even when refluxed in xylene. Kraus
has recently used 1-trimethylsilyloxy-1,3-butadiene in a
Diels–Alder sequence to synthesize tetrangulol.20 We
had hoped to employ a similar reaction sequence to
access the 1- and 4-hydroxycarbazoles. However, the
cycloaddition between 1-trimethylsilyloxy-1,3-butadiene
and 3-nitroindole 2 in refluxing in xylene afforded only
9-ethoxycarbonylcarbazole in 47% yield (46% recovered
starting material). With 2-nitroindole 3, no reaction
was observed under these conditions.

In summary, 2- and 3-nitroindoles 1–3 react efficiently
with dienes 4 and 5 in normal electron demand Diels–
Alder reactions to give the expected carbazole cycload-
ducts with high or complete regioselectivity.
Applications of this chemistry to the synthesis of carba-
zole natural products are underway.
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