

Tetrahedron Letters 42 (2001) 4783-4785

TETRAHEDRON LETTERS

Diels-Alder reactions of 2- and 3-nitroindoles. A simple hydroxycarbazole synthesis

Tara L. S. Kishbaugh and Gordon W. Gribble*

Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA Received 20 February 2001; revised 9 May 2001; accepted 16 May 2001

Abstract—A Diels–Alder reaction of 3- and 2-nitroindoles with Danishefsky's diene gives the expected 2- and 3-hydroxycarbazoles in very good to excellent yields (73–91%) and with apparent complete regioselectivity. © 2001 Elsevier Science Ltd. All rights reserved.

It is well established that the indole 2,3-double bond can serve as a dienophile in inverse electron demand Diels–Alder reactions.¹ The recent work of Snyder is particularly noteworthy in this regard.² Fewer examples exist of indole reacting with electron-rich dienes in normal demand Diels–Alder reactions. Raasch described the Diels–Alder reaction of indole with tetrachlorothiophene-1,1-dioxide.³ Wenkert showed that indoles with electron-withdrawing groups on both the C-3 position and nitrogen react with simple dienes (isoprene, 2,3-dimethyl-1,3-butadiene) to give tetrahydrocarbazoles.⁴ Kraus achieved the first intramolecular Diels–Alder reactions of the indole double bond.⁵ Steckhan has effected a photoinduced electron-transfercatalyzed step-wise reaction between indole and 1,3cyclohexadienes.⁶ Markgraf achieved the cycloaddition of *N*-methylindole and *o*-xylylene.⁷ Padwa has employed an intramolecular indole-furan Diels–Alder reaction strategy to craft several hexahydroindolinones.⁸ During the course of our work, Mancini reported Diels–Alder reactions between *N*-tosyl-3-nitroindole and *N*-acyl-*N*-alkylamino-1,3-butadienes.⁹

In continuation of our interest in the cycloaddition chemistry of 2- and 3-nitroindoles,¹⁰ we now describe the Diels–Alder reactions of nitroindoles 1-3 with Danishefsky's diene (4) (1-methoxy-3-(trimethylsiloxy)-1,3-

Scheme 1.

Scheme 2.

Keywords: 2-nitroindole; 3-nitroindole; Diels–Alder reaction; 2-hydroxycarbazole; 3-hydroxycarbazole. * Corresponding author. Tel.: 1-603-646-3118; fax: 1-603-6463946; e-mail: grib@dartmouth.edu

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00854-1

butadiene) and 1-dimethylamino-3-*tert*-butyldimethyl-siloxy-1,3-butadiene (**5**).¹¹

Treatment of 3-nitro-1-(phenylsulfonyl)indole $(1)^{12}$ with diene **4** in refluxing toluene afforded a mixture of *exo* adduct **6**¹³ (56% yield) and 2-hydroxy-9-(phenylsulfonyl)carbazole (7)¹³ (35% yield) following acid hydrolysis. Both compounds were fully characterized, including X-ray structure determinations.¹⁴ In refluxing THF the cycloaddition of **1** and **4** gave a lower yield (47%) of a mixture of **6** and the *endo* isomer by NMR (Scheme 1).

Similarly, 1-ethoxycarbonyl-3-nitroindole $(2)^{12}$ reacted with **4** under the same conditions to afford 9-ethoxycarbonyl-2-hydroxycarbazole $(8)^{13}$ in 85% yield. The intermediate cycloadduct was not observed in this case. Hydrolysis of **8** with KOH/MeOH/reflux gave the known 2-hydroxycarbazole $(9)^{15}$ (Scheme 2).

A Diels–Alder reaction under the usual conditions between 1-ethoxycarbonyl-2-nitroindole $(3)^{16}$ and 4 gave 9-ethoxycarbonyl-3-hydroxycarbazole $(10)^{13}$ in 73% yield, after acidic treatment. Base cleavage of the carbamate afforded the known 3-hydroxycarbazole $(11)^{17}$ (Scheme 3).

In contrast to these relatively smooth Diels–Alder reactions with Danishefsky's diene (4), nitroindole 1 and 3-nitro-1-pivaloylindole¹² failed to produce isolable products with Rawal's diene (5). However, 5 did react with 2-nitroindole 3 in refluxing toluene to afford cycloadduct 12^{13} in 51% yield, along with 2-nitroindole (37% yield). Deprotonation of 12 with TBAF gave carbazole 10 (quantitative) (Scheme 4). The comparable Diels–Alder reactions of dienes 4 and 5 with 2-nitro-1-(phenylsulfonyl)indole $(13)^{16}$ were quite sluggish and only 5 behaved appropriately to afford carbazole 14^{13} in low yield (Scheme 5).

We have also pursued a Diels–Alder approach to 1and 4-hydroxycarbazoles with two dienes. A vinylketene equivalent, 3-hydroxy-2-pyrone,^{18,19} failed to undergo a cycloaddition with either 2-nitroindole **3** or 3-nitroindole **2** even when refluxed in xylene. Kraus has recently used 1-trimethylsilyloxy-1,3-butadiene in a Diels–Alder sequence to synthesize tetrangulol.²⁰ We had hoped to employ a similar reaction sequence to access the 1- and 4-hydroxycarbazoles. However, the cycloaddition between 1-trimethylsilyloxy-1,3-butadiene and 3-nitroindole **2** in refluxing in xylene afforded only 9-ethoxycarbonylcarbazole in 47% yield (46% recovered starting material). With 2-nitroindole **3**, no reaction was observed under these conditions.

In summary, 2- and 3-nitroindoles 1–3 react efficiently with dienes 4 and 5 in normal electron demand Diels– Alder reactions to give the expected carbazole cycloadducts with high or complete regioselectivity. Applications of this chemistry to the synthesis of carbazole natural products are underway.

Acknowledgements

This investigation was supported by the National Institutes of Health (GM58601), for which we are grateful.

References

- (a) For an excellent review, see: Lee, L.; Snyder, J. K. Adv. Cycloaddit. 1999, 6, 119–171; (b) For a recent example, see: Hsieh, M.-F.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1999, 1441–1442.
- Benson, S. C.; Lee, L.; Yang, L.; Snyder, J. K. Tetrahedron 2000, 56, 1165–1180 and previous papers.
- 3. Raasch, M. S. J. Org. Chem. 1980, 45, 856-867.
- Wenkert, E.; Moeller, P. D. R.; Piettre, S. R. J. Am. Chem. Soc. 1988, 110, 7188–7194.
- (a) Kraus, G. A.; Raggon, J.; Thomas, P. J.; Bougie, D. *Tetrahedron Lett.* **1988**, *29*, 5605–5608; (b) Kraus, G. A.; Bougie, D.; Jacobson, R. A.; Su, Y. J. Org. Chem. **1989**, *54*, 2425–2428.
- (a) Gieseler, A.; Steckhan, E.; Wiest, O. Synlett 1990, 275–277;
 (b) Gieseler, A.; Steckhan, E.; Wiest, O.; Knoch, F. J. Org. Chem. 1991, 56, 1405–1411;
 (c) Wiest, O.; Steckhan, E.; Grein, F. J. Org. Chem. 1992, 57, 4034–4037;
 (d) Wiest, O.; Steckhan, E. Tetrahedron Lett. 1993, 34, 6391–6394.
- 7. Markgraf, J. H.; Patterson, D. E. J. Heterocyclic Chem. 1996, 33, 109–111.
- Padwa, A.; Brodney, M. A.; Dimitroff, M. J. Org. Chem. 1998, 63, 5304–5305.
- Biolatto, B.; Kneeteman, M.; Mancini, P. *Tetrahedron Lett.* 1999, 40, 3343–3346.
- (a) Pelkey, E. T.; Gribble, G. W. Chem. Commun. 1997, 1873–1874; (b) Gribble, G. W.; Pelkey, E. T.; Switzer, F. L. Synlett 1998, 1061–1062; (c) Gribble, G. W.; Pelkey, E. T.; Simon, W. M.; Trujillo, H. A. Tetrahedron 2000, 56, 10133–10140.
- (a) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252–5253; (b) Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2000, 122, 7843–7844 and previous papers.
- 12. Pelkey, E. G.; Gribble, G. W. Synthesis 1999, 1117-1122.
- 13. Compound 6: mp 178–179°C; IR (film) v_{max} 1722 (C=O), 1361 (SO₂), 1166 (SO₂) cm⁻¹; (EtOH) λ_{max} 256 nm. ¹H (CD₂Cl₂): δ 7.73–7.80 (m, 3H), 7.55–7.62 (m, 2H), 7.42– 7.52 (m, 3H), 7.15-7.20 (m, 1H), 5.70 (dd, 1H, 2, 6 Hz), 4.67 (m, 1H), 3.46 (s, 3H), 3.20 (dd, 1H, 6, 16 Hz), 3.15 (dd, 1H, 2, 16 Hz), 2.67 (dd, 1H, 3, 19 Hz), 1.92 (dd, 1H, 3, 19 Hz). ¹³C (CD₂Cl₂): δ 204.2, 142.7, 136.2, 134.4, 133.5, 129.6, 127.9, 125.9, 125.6, 125.4, 116.8, 96.1, 20.5, 62.0, 58.3, 44.5, 37.7; Anal. calcd for C₁₉H₁₈N₂O₆S: C, 56.71; H, 4.51; N, 6.96; S, 7.97. Found: C, 56.40; H, 4.45; N, 6.88; S, 7.91. Compound 7: IR (film) v_{max} 3347 (OH), 1367 (SO₂), 1176 (SO₂) cm⁻¹; UV (EtOH) λ_{max} 224, 260 nm; ¹H (CD₃COCD₃): δ 8.84 (s, 1H), 8.27 (d, 1H, 7.5 Hz), 7.84–7.91 (m, 5H), 7.34–7.59 (m, 5H), 6.95 (dd, 1H, 2, 8 Hz); 13 C (CD₃COCD₃): δ 158.7, 140.7, 139.0, 138.6, 135.2, 130.3, 127.8, 127.3, 126.8, 125.2, 122.0, 120.2,

119.8, 115.7, 113.9, 102.5. Compound 8: mp 172-172.5°C; IR (film) v_{max} 3328 (OH), 1702 (C=O) cm⁻¹; (EtOH) λ_{max} 230, 264, 294, 330 nm. ¹H (CD₃COCD₃): δ 8.74 (s, 1H), 8.26 (d, 1H, 8 Hz), 7.88-7.96 (m, 3H), 7.29-7.40 (m, 2H), 6.94 (d, 1H, 8 Hz), 4.58 (q, 2H, 7 Hz), 1.53 (t, 3H, 7 Hz); ¹³C (CD₃COCD₃): δ 158.6, 153.1, 140.7, 139.0, 127.1, 126.4, 124.2, 121.4, 119.6, 119.2, 116.9, 112.9, 103.9, 63.9, 14.8; Anal. calcd for C₁₅H₁₃NO₃: C, 70.58; H, 5.13; N, 5.49. Found: C, 70.20; H, 5.13; N; 5.41. Compound 10: mp 197–198°C; IR (film) v_{max} 3401 (OH), 1723 (C=O) cm⁻¹; (EtOH) λ_{max} 232, 274, 296, 304 nm. ¹H (CD₃COCD₃): δ 8.42 (s, 1H), 8.30 (d, 1H, 8 Hz), 8.15 (d, 1H, 9 Hz), 8.01 (m, 1H), 7.44–7.52 (m, 2H), 7.32–7.37 (m, 1H), 7.03 (dd, 1H, 2.5, 9 Hz), 4.58 (q, 2H, 7 Hz), 1.53 (t, 3H, 7 Hz). ¹³C (CD₃COCD₃): δ 154.9, 152.9, 139.7, 132.9, 128.1, 127.8, 126.7, 123.9, 120.7, 117.9, 117.1, 116.5, 106.1, 63.8, 14.8. Anal. calcd for C₁₅H₁₃NO₃: C, 70.58; H, 5.13; N, 5.49. Found: C, 70.19; H, 5.20; N, 5.38. Compound 12: ¹H (CDCl₃): δ 8.32 (d, 1H, 8 Hz), 8.20 (d, 1H, 9 Hz), 7.93 (d, 1H, 7 Hz), 7.45–7.52 (m, 2H), 7.34-7.39 (m, 1H), 7.03 (dd, 1H, 2, 9 Hz), 4.60 (q, 2H, 7 Hz), 1.57 (t, 3H, 7.32 Hz), 1.10 (t, 9H, 3 Hz), 0.31 (t, 6H, 3 Hz); ¹³C (CDCl₃): δ 152.6, 152.2, 139.1, 133.4, 127.5, 127.3, 126.1, 123.3, 120.2, 119.9, 117.2, 116.6, 110.5, 63.2, 30.0, 26.1, 26.0, 18.6, 14.8, -2.6, -4.1; MS m/z 404 ([M+Cl]), 370 (MH⁺), HRMS m/z calcd for C₂₁H₂₇NO₃Si (M⁺) 369.1760, found 369.1763. Compound 14: ¹H (CDCl₃): δ 8.34 (d, 1H, 8 Hz), 8.21 (d, 1H, 9 Hz), 7.86 (d, 1H, 7 Hz), 7.78-7.82 (m, 2H), 7.30-7.54 (m, 6H), 7.03 (dd, 1H, 2, 9 Hz), 1.06 (s, 9H), 0.27 (s, 6H). ¹³C (CDCl₃): δ 152.9, 139.2, 137.9, 133.9, 133.3, 129.1, 127.9, 127.7, 126.8, 126.7, 124.1, 120.4, 120.3, 116.3, 115.7, 110.6, 25.9, 18.4, -2.7, -4.2.

- 14. Kishbaugh, T. L. S.; Jasinski, J.; Gribble, G. W., unpublished results.
- (a) Cummins, J. A.; Tomlinson, M. L. J. Chem. Soc. 1955, 3475–3477; (b) Compound 9: mp 262–263°C; lit. mp 262–264°C: Benzies, D. W. M.; Fresneda, P. M.; Jones, R. A.; McNab, H. J. Chem. Soc., Perkin Trans 1 1986, 1651–1654; (c) This is also commercially available.
- Pelkey, E. T.; Gribble, G. W. Tetrahedron Lett. 1997, 38, 5603–5606.
- (a) Ruff, O.; Stein, V. Ber. 1901, 34, 1668–1684; (b) Compound 11: mp 257–258°C; lit. mp 259–260°C: Bisagni, E.; Ducrocq, C.; Hung, N. C. Tetrahedron 1980, 36, 1327–1330.
- Wiley, R. H.; Jarboe, C. H. J. Am. Chem. Soc. 1956, 78, 2398–2401.
- Corey, E. J.; Kozikowski, A. P. *Tetrahedron Lett.* 1975, 2389–2392.
- Kraus, G. A.; Zhang, N.; Melekhov, A.; Jensen, J. H. Synlett 2001, 521–522.